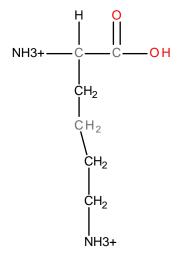

Acid-Base Practice Worksheet

- 1.) For each of the following solutions, write the reaction that occurs when placed in water and compute [H⁺], [OH⁻], pH and pOH.
 - a.) 0.0080 M solution of HNO₃
 - b.) 0.020 M solution of HCN, $(K_a = 6.2 \times 10^{-10})$
 - c.) 0.024 M solution of ethyl amine, $C_2H_5NH_2$. ($K_b = 6.4 \times 10^{-4}$)
 - d.) The concentration of citric acid in lemon juice is about 4.0 % m/v. Compute the [H⁺], [OH⁻], pH and pOH for lemon juice. ($K_a = 7.4 \times 10^{-4}$, MW = 192.12)
- 2.) Consider the following acids and their pK_a values.

Acid	pKa
HIO ₃	0.77
HIO	10.64
$H_2C_6H_6O_6$	4.10

- a.) List the acids in order of increasing strength.
- b.) Write the conjugate bases for each acid and list them in increase order of base strength.
- 3.) The following is the amino acid, lysine which has a pI of 10.0. Draw the structure of this amino acid in physiologic solution (pH ~ 7.4)



- 4.) You wish to make a buffer from butanoic acid, $HC_4H_7O_2$, $(K_a = 1.5 \times 10^{-5})$
 - a.) Write the equilibrium in a buffer system using this acid and its' base.
 - b.) What is the pH of the buffer if the concentration of the acid and the base is 0.50 M.
 - c.) What will happen to the pH if the base is at a higher concentration than the acid?
 - d.) Write the reaction that occurs if acid is added to this system.

Solutions

- 1.) a.) HNO₃(aq) \rightarrow H⁺(aq) + NO₃⁻(aq) [H⁺] = 0.0080 M, [OH⁻] = 1.25 x 10⁻¹² M, pH = 2.10, pOH = 11.90.
- b.) HCN(aq) \leftrightarrow H⁺(aq) + CN⁻(aq) [H⁺] = 3.52 x 10⁻⁶ M, [OH⁻] = 2.83 x 10⁻⁹ M, pH = 5.45, pOH = 8.55.
- c.) $C_2H_5NH_2(aq) + H_2O(l) \leftrightarrow C_2H_5NH_3^+(aq) + OH^-$. $[H^+] = 2.55 \times 10^{-12} M, [OH^-] = 3.92 \times 10^{-3} M, pH = 11.59, pOH = 2.41.$
- d.) $[H^+] = 0.0124 \text{ M}, [OH^-] = 8.06 \text{ x } 10^{-13} \text{ M}, \text{ pH} = 1.91, \text{ pOH} = 12.09.$
- 2.)

a.) $HIO < H_2C_6H_6O_6 < HIO_3$. b.) $IO_3^- < HC_6H_6O_6^- < HIO^-$.

4.)

- a.) $HC_4H_7O_2(aq) \leftrightarrow H^+(aq) + C_4H_7O_2(aq)$
- b.) pH = pKa = 4.82 when concentrations are equal
- c.) The pH will be higher than 4.82
- d.) $H^+(aq) + C_4H_7O_2(aq) \rightarrow HC_4H_7O_2(aq)$